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In order to maintain the reliability of civil engineering structures, considerable
e!ort is currently spent on developing a non-destructive vibration testing method
for monitoring the structural integrity of constructions. The technique must be able
to observe damage, secondly to localize the damage; and "nally to give an idea of
the severity of the damage. Within the framework of relating changes of measured
modal parameters to changes in the integrity of the structure, it is important to be
able to determine the dynamic sti!ness in each section of the structure from
measured modal characteristics.

A damaged structure results in a dynamic sti!ness reduction of the cracked
sections. The dynamic sti!nesses provide directly an indication of the extension of
the cracked zones in the structure. The dynamic sti!ness reduction can also be
associated with a degree of cracking in a particular zone.

In an experimental programme, a concrete beam of 6 m length is subjected to an
increasing static load to produce cracks. After each static perload, the beam is
tested dynamically in a free}free set-up. The change in modal parameters is then
related to damage in the beam.

The technique that will be presented in the paper to predict the damage location
and intensity is a direct sti!ness derivation from measured modal displacement
derivatives. Using the bending modes, the dynamic bending sti!ness can be derived
from modal curvatures. Using the torsional modes, the dynamic torsion sti!ness
can be derived from modal torsion rates. ( 1999 Academic Press
1. INTRODUCTION

In the framework of developing a non-destructive vibration testing method for
monitoring the structural integrity of constructions in civil engineering, a technique
is elaborated to derive the dynamic bending and torsion sti!ness at a certain
location of a structure using the measured mode shapes and the corresponding
eigenfrequencies. One of the goals of non-destructive vibration testing is to relate
a shift in measured modal characteristics to a change in material properties of the
structure.
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Determining the damage parameters from modal parameter shifts belongs to the
group of inverse problems [1]. Many studies have attempted to determine and
localize damage patterns only from changes of eigenfrequencies [2, 3]. Even though
eigenfrequencies are sensitive indicators of structural integrity [4], methods using
only eigenfrequencies have a number of shortcomings. They cannot distinguish
damage at symmetrical locations in a symmetric structure, and the number of
measured eigenfrequencies is generally lower than the number of unknown modal
parameters resulting in a non-unique solution. Therefore, also mode shapes can be
included in damage detection. In references [5, 6] changes in strain energy are used
to localize damage, while Ruotolo and Surace [7] "t a mathematical model to
measurements by minimizing an objective function. In reference [8] expressions
relating variations in sti!ness of structural elements to the variations in modal
sti!ness are generated, resulting in a system of algebraic equations with known
fractional changes in modal sti!ness and unknown fractional changes in member
sti!ness. However, modal displacements are rather insensitive to moderate damage.
Pandey et al. [9] introduce curvature mode shapes. Modal curvatures seem to be
locally much more sensitive to damage than modal displacements [10]. Accurate
estimation of the curvatures from experimental data remains di$cult. In the paper,
a technique is developed to calculate the modal curvatures and torsion rates
without numerical derivation from the displacements. Combined with modal
internal forces this leads directly to an estimation of sti!ness decrease in the
structure.

After a description of the test set-up, the direct sti!ness derivation procedure is
explained. The technique is then validated using experimental data.

2. TEST PROGRAM

An experimental programme was set up to establish the relation between damage
and changes of the dynamic system characteristics. In the test programme,
a reinforced concrete beam of 6 m length is subjected to an increasing static load in
order to produce cracks.

The test beam is subjected to two identical point loads (symmetric at 1 m from
the middle). After each loadstep (6 in total, Table 1), an experimental modal
TABLE 1

Static loadsteps

Static load (kN)

Step 0 (reference) 0
Step 1 4
Step 2 6
Step 3 12
Step 4 18
Step 5 24
Step 6 25)3
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analysis is performed on the beam. The last loadstep (6 in total, Table 1), an
experimental modal analysis is performed on the beam. The last loadstep
corresponds to failure (plastic yielding of the reinforcement bars).

A free}free set-up for the beam is established by using very #exible springs to
support the beam. Accelerometers were placed at 20 cm intervals along both
longitudinal edges of the upper side of the beam (62 measurement points in
total). The experimental set-up and beam characteristics are given in Figures 1
and 2 [11]: H8 denotes the diameter of the stirrups, placed every 200 mm,
whereas H16 is the diameter of the longitudinal rebars, running the full length of
the beam.

The stochastic subspace identi"cation technique is applied to the dynamic
response of the beam in order to extract the modal parameters [11, 12]. The "rst
three bending modes and the "rst torsional mode are plotted in Figure 3. To
visualize the torsional mode, the vertical de#ections at both longitudinal edges of
the upper side of the beam are shown.

In Figure 4 the observed crack pattern and growth is shown for the successive
static loadsteps.
Figure 1. Section characteristics.

Figure 2. Static & dynamic set-up.



Figure 3. First four identi"ed mode shapes.

Figure 4. Crack pattern for six loadsteps.
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3. SOLUTION PROCEDURE

The direct dynamic sti!ness calculation uses the experimental mode shapes in
deriving the dynamic sti!ness. If the mass distribution is assumed to be known, the
great advantage is that no numerical model is needed to obtain the dynamic
sti!ness distribution for statically determined structures. For hyperstatic structures,
the reaction forces and consequently the internal forces are dependent on the
sti!ness of the structure. Therefore, an iterative procedure is applied to a numerical
model to "nd the bending sti!ness distribution of a hyperstatic structure.

The method makes use of the basic relation that the dynamic bending sti!ness
(EI) in each section is equal to the bending moment (M) in that section divided by
the corresponding curvature (second derivative of bending mode ub). In the same
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manner, the dynamic torsion sti!ness (GJ) in each section is equal to the torsional
moment (¹) in that section divided by the corresponding torsion rate (or torsion
angle per unit length, i.e. "rst derivative of torsional mode ut ):

EI"
M

d2ub/dx2
,

GJ"
¹

dut/dx
. (1)

4. CALCULATION OF MODAL INERTIA FORCES

The eigenvalue problem of the undamped system can be written as
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in which K
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is the sti!ness matrix, M
a
the analytical mass matrix, u

m
the vector of

the measured modal displacements and u
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the measured eigenpulsation. This can
be seen as a pseudo-static system: for each mode internal (section) forces are due to
the inertial load which can be calculated as the product of local mass and local
acceleration ("u2

m
)u
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).

The mass distribution is assumed to be known. A lumped mass matrix is used in
equation (2), which is acceptable if the measurement mesh is rather dense.

For the bending modes u
m

is equal to ub
m
, the vertical de#ections that are directly

available. In the calculation of the modal internal forces, the contribution of
rotational inertia is proven to be negligible for the lower modes. For the torsional
modes, u
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is equal to ut

m
, and the rotation angles are not directly measured but are,

in the case of the beam, easily obtained from the vertical de#ections on both sides of
the beam.

If in equation (2), u
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contains only the modal displacements at the measurement
points, one obtains a discrete pattern of the inertia load. A correction can be made by
linearly interpolating the measurements and obtaining in this way a distributed load.
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5. CALCULATION OF MODAL INTERNAL FORCES

From the modal inertia load the shear forces (<
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Figure 5. Sign convention for internal forces and displacements.
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In equation (3), o, A, ia, a, b are respectively the density, cross-sectional area, polar
moment of inertia and the height and width of the beam. The values for<

0
, M

0
and

¹
0

are zero in the recursive formula (3). Because of the free}free set-up in the
dynamic tests, the inertia forces should be in static equilibrium. Due to
measurement errors, this is not exactly the case, which causes non-uniqueness of the
internal forces. Therefore, a Gram}Schmidt orthogonalization will be applied to
the experimental mode shapes. The corrected mode uN

m
for bending and torsional

modes can be calculated from
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with a, b and c being the unknowns to be determined from the vertical, moment and
torsional equilibrium:
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Figure 6. Three rigid-body modes of free}free beam.
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X
1
, X

2
, X

3
are respectively the translational and two rotational rigid-body modes

of the free beam (Figure 6).
Equation (5) in fact states nothing more than that the bending and torsional

modes are mass-orthogonal to respectively X
1
, X

2
and X

3
, i.e.
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Using now in equation (3) the orthogonalized mode shapes (4), the internal modal
forces can uniquely be calculated in each section.

6. DETERMINATION OF CURVATURES AND TORSION RATES

The next step in deriving the dynamic bending and torsion sti!ness consists of
the calculation of curvatures along the beam for the bending modes and torsion
rates for the torsional modes. Direct calculation of "rst and second derivatives from
measured mode shapes, e.g. by using the central di!erence approximation, results in
oscillating and inaccurate values. A smoothing procedure accounting for the
inherent inaccuracies of the measured mode shapes should be applied.

A "rst step in smoothing the mode shapes is called global smoothing. Measured
de#ections (or derived rotation angles in the case of a torsional mode) are "tted in
a least-squares sense by a polynomial of a degree high enough to give a close
approximation of the measured mode shapes but certainly lower than the number
of measurement points to smooth out the errors. The optimal degree of the "tting
polynomial increases for higher modes.
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A di$cult point is to choose an appropriate degree for the polynomial. If too low
a degree is chosen the measurements are smoothed too much; if too high a degree is
chosen measurement errors are not "ltered out.

Also an alternative smoothing procedure, i.e. a weighted residual penalty-based
technique, has been established.

For the bending modes one is interested to obtain the second derivatives of the
modal de#ections [equation (1)]. The beam is divided into a number of elements
separated by nodes corresponding to the measurement points. Each node has three
degrees of freedom: the modal vertical displacement v, the modal rotation t and the
modal curvature i, which are approximated independently (Figure 7). Linear shape
functions N

i
are used.

This is analogous to the Mindlin plate element, for which the rotations are
approximated independently from the de#ection. For this reason, this method will
be called the Mindlin approach.

The objective function, which has to be minimized, contains the di!erence
between approximations and measured mode shapes. Two penalty terms are added
to enforce continuity of rotations and curvatures in a mean, smeared way:

n"P
(v!ub

m
)2

2
dx#

a¸e2

2 P At!

dv
dxB

2
dx#

b¸e4

2 P Ai!
dt
dxB

2
dx, (7)

where ub
m

denotes the measured mode shape, and ¸e is the length of a "nite
element. Elements are chosen in such a way that nodes coincide with measurement
points.

The "rst term states that the average di!erence between approximation
and measurement has to be minimized. Without any other terms in the
potential function, one will "nd a (piecewise linear) approximation through all
measurement points. In order to "lter experimental errors and so smooth the
de#ection, two extra terms are added. Di!erences between the (independent)
approximations of rotations and curvatures with respectively the "rst derivatives of
displacements and rotations are minimized. The coupling between the
independently approximated unknown is established by these constraint
conditions. The weight of these extra conditions is set by the dimensionless
penalty factors a and b.

Deriving the objective function (7) to the unknown modal degrees of freedom
gives the following equations from which displacements, rotations and curvatures

Figure 7. Element degrees of freedom.
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are obtained:
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Substituting the linear shape functions and solving the integral expressions gives an
analytical form for the governing system on element level:
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After assemblage, a symmetric, non-singular system of the order of three times
the number of nodes is obtained.
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Advantages of this Mindlin approach is that directly curvatures are available,
boundary conditions can be imposed easily (in this experimental set-up curvatures
at the free beam ends have to be zero) and the approximated modal de#ections have
not to go through all measurement points. A drawback is the di$culty in choosing
appropriate penalty factors. Values which are too high cause locking of the system.

In the following, a and b are chosen in such a way that the median of the relative
error on the modal de#ections is 2}3%, which is a reasonable estimation of the
anticipated measurement inaccuracy. Hence, every mode shape has its own penalty
factors.

For the torsional modes the method adopted is similar. In equation (7), ub
m

has to
be replaced by ut

m
and v, t and i are now respectively the approximations for the

rotation angles, the rotation angles per unit length and the second derivatives of the
rotation angles. In the later calculation, only the "rst derivative is needed for
torsion sti!ness derivation. Approximating the second derivatives is not strictly
necessary but turns out to have a positive e!ect on the smoothness of the "rst
derivatives. For the free}free beam the boundary conditions are that the rotation
angles per unit length are zero at the beam ends.

7. EXPERIMENTAL VALIDATION

In this section, the method will be validated by deriving the dynamic sti!ness
along the beam length. The results of the test programme will be used to evaluate
the dynamic sti!ness at successive damage states.

All numerical results are obtained from routines developed in the MATLAB [13]
environment. The measured dynamic Young's modulus by an axial resonance test
on a cylinder is 33,000 N/mm2. Using the section dimensions (Figure 1), the
bending sti!ness for the test beam in the undamaged state is calculated to be
6)46]106 Nm2. The torsion sti!ness in the undamaged state is calculated to be
4)75]106 Nm2, which corresponds to a shear modulus of 14,100 N/mm2. All
identi"ed mode shapes are scaled to a value one as maximal modal displacement.

Making use of the pure measurements and calculating directly the second
derivatives using the central di!erence approximation gives too much scatter as
shown for the reference state (without any static preload) in Figure 8.

In the same way, using the "rst torsion mode, inaccurate torsion rates are
obtained when using the "nite-di!erence approximation. Torsion rates are not zero
at the beam ends. One can also observe from Figure 9 that the over- or
under-estimation of the angles along the beam for the di!erent loadsteps is
systematic, probably due to the lack of perfect verticality of the accelerometers on
the beam surface.

When global smoothing is applied to the mode shapes, the obtained polynomial
is derived twice to obtain the curvatures for bending modes and once to obtain the
torsion rates for the torsion modes. This results in much smoother values (Figures
10 and 11).

The zero boundary conditions at the ends are quite well satis"ed. It also turns
out that the degree of the "tting polynomial in#uences the degree of distortion by
outliers in the measurements.



Figure 8. Curvatures for "rst bending mode*central di!erence approximation.

Figure 9. Torsion rates for "rst torsion mode*central di!erence approximation.** Step 0;=+
Step 1; } } } Step 2; *} - Step 3; )))) ))) )) Step 4; )))))))) Step 5; ) ) ) ) ) Step 6.

Figure 10. Curvature for "rst bending mode*global smoothing.** Step 0; } } } Step 1; - - - Step
2; })})} Step 3; }))}))} Step 4; ))))) Steps 5 and 6.
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Figure 11. Torsion rates for "rst torsion mode*global smoothing.** Step 0; =+ Step 1; } } }
Step 2; *} - Step 3; )))) ))) )) Step 4; )))))))) Steps 5 and 6.

Figure 12. Bending sti!ness for all loadsteps ("rst mode)*global smoothing.** Step 0; } } } Step
1; - - - Step 2; })})} Step 3; }))}))} Step 4; ))))) Steps 5 and 6.
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As damage generally corresponds to a local increase in curvature, one should
also take care not to conceal this change by the global polynomial. The main
di$culty of the global smoothing technique is choosing an optimal degree.

Using the "rst bending and torsion mode, the sti!ness reduction is shown in
Figures 12 and 13.

The estimates are reliable within the interval 1)4}4)6 m. Outside this interval,
estimates are inaccurate due to numerical inaccuracy near the beam ends (zero by
zero division).

For the Mindlin approach the calculation procedure for the derivation of the
modal curvatures is illustrated by Figure 14, which shows for the "rst mode shape
the di!erent "nite-element variables along the beam axis in the reference
(undamaged) state. Figure 14(a) shows the approximated versus the experimental
mode shape (#), Figure 14 (b) the relative error with median value 2)1%, and
Figures 14(c) and (d) the modal rotations and curvatures.



Figure 13. Torsion sti!ness for all loadsteps (fourth mode)*global smoothing. ** Step 0; } } }
Step 1; - - - Step 2; })})} Step 3; }))}))} Step 4; ))))) Steps 5 and 6.

Figure 14. (a) Displacements v versus u
m
, for "rst bending mode*Mindlin approach. (b) Relative

error, (c) rotations t, (d) curvatures i.
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To obtain the dynamic bending sti!ness for the reference state, one should
calculate the bending moments. Figure 15 shows the results for the "rst bending
mode. Figure 15(a) shows the measured and the (almost identical) orthogonalized
mode shape according to equation (4), plotted upon each other. Figure 15(b) shows
the distributions of inertia forces from which the modal shear forces and bending
moments can be determined according to equation (3) [Figures 15(c) and (d)].
Dividing the bending moments by the modal curvatures [Figure 15(e) identical to
Figure 14(d)] results in the dynamic bending sti!ness [Figure 15(f )].

From Figure 15 it can be noted that at the sections of almost-zero bending
moments (or almost-zero curvatures), the approximation for EI is no longer



Figure 15. (a) Displacements "rst bending mode of beam, (b) inertia forces, (c) shear forces, (d)
bending moments, (e) curvatures, (f ) bending sti!ness.

Figure 16. EI for "rst four bending modes*Mindlin approach. ** Mode 1; } } } Mode 2; - - -
Mode 3; }-}- Mode 4.
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accurate. Higher modes have even more sections with zero curvatures (Figure 16).
This is a disadvantage when using the method for higher modes.

In the previous Figures, the dynamic sti!ness is determined for the undamaged
reference state of the beam. The same procedure can be followed for the measured
modes and eigenfrequencies after each static loadstep in order to examine the
sti!ness degradation due to cracks in the beam. The evolution of the dynamic



Figure 17. Dynamic bending sti!ness degradation using "rst three bending modes. (a)** Step 0;
} } } Step 1; - - - Step 2; }-}- Step 3; }--}-- Step 4; ))))))) Steps 5 and 6; (b)** Step 0; } } } Step 1; - - -
Step 2; }-}- Step 3; }--}-- Step 4; ))))))) Steps 5 and 6; (c)** Step 0; } } } Step 1; - - - Step 2; }-}- Step
3; }--}-- Step 4; ))))))) Steps 5 and 6.
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bending sti!ness through di!erent loadsteps is shown in Figure 17. In each plot
information of one mode is used. In each Figure, the inaccurate zones due to almost
zero bending moments and curvatures are omitted. Figure 18 shows the
degradation of torsion sti!ness using the "rst torsional mode.



Figure 18. Dynamic torsion sti!ness degradation using "rst torsional mode.** Step 0; } } } Step
1; - - - Step 2; })})} Step 3; }))}))} Step 4; ))))) Steps 5 and 6.

TABLE 2

Procentual sti+ness decrease after each loadstep

loadstep 1 loadstep 2 loadstep 3 loadstep 4 loadstep 5 loadstep 6

Global EI 17% 21% 22% 26% 33% 48%
smoothing GJ 10% 13% 15% 18% 26% 44%

Mindlin EI 17% 21% 22% 26% 33% 49%
approach GJ 8% 11% 14% 17% 24% 39%
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The beam zone from 2 to 4 m (between the two pointloads) is a zone of almost
constant static bending moment, which should result in the same cracking and
consequently the same dynamic sti!ness. Due to the weight of the beam the
bending moments in the middle are slightly higher as is the degree of cracking and
the reduction of the dynamic sti!ness. Results from the "rst three bending modes
are comparable.

Using the bending and torsional modes, the (averaged) decrease of sti!ness in the
mid-section after each static loadstep is given in Table 2 for the global smoothing
and the Mindlin approach. The results for both methods are very similar. As can be
observed from the dynamic sti!ness degradation plots and Table 2, the "rst
loadstep (16% of ultimate load) and the last loadstep cause the bigger decrease. The
decrease in torsion sti!ness is less than the decrease in bending sti!ness.

Although results are similar for both methods, the possibility to enforce
boundary conditions in an explicit way and the freedom to choose two parameters
for smoothing the mode shapes are the advantages of the Mindlin approach
compared to the global smoothing.

8. CONCLUSIONS

This paper describes a technique to determine the dynamic sti!ness of
a reinforced concrete beam in the undamaged and damaged state. The direct
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sti!ness calculation makes use of the experimental mode shapes and eigen-
frequencies in order to derive the dynamic sti!ness from modal curvature and
torsion rate calculations. Preliminary smoothing is necessary to obtain reasonable
derivatives.

The advantage of the method is that no numerical model is needed to obtain the
dynamic sti!ness distribution. However, a rather dense measurement grid is
necessary in order to be able to identify accurately the curvatures of the higher
modes.

The bending sti!ness decreased with about 50% in the ultimate damaged state of
the beam, the torsion sti!ness with about 40%. It is noticed that bending cracks
also produce a very pronounced decrease in torsion sti!ness.

In the near future the dynamic bending and torsion sti!ness derivation form,
respectively, modal curvatures and torsion rates will be applied to a progressively
damaged prestressed concrete bridge. It will be challenging to demonstrate whether
damage localization and possibly quanti"cation for a real-life structure can be
obtained by the present method.
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